
GENERALIZED METHOD OF CELLS

In the original formulation of the method of cells, a continuously (or discontinuously)
reinforced, unidirectional fibrous composite is modeled as a rectangular, double-periodic
(or triply-periodic) array of fibers embedded in a matrix phase. The periodic character of
the assemblage allows one to identify a repeating unit cell that can be used as a building
block to construct the entire composite. The properties of the repeating cell are thus rep-
resentative of the properties of the entire assemblage. The unit cell consists of a single
fiber subcell surrounded by three matrix subcells for continuous and seven for discontin-
uous composites, hence the name method of cells . The rectangular geometry of the
repeating unit cell allows one to obtain an approximate solution for the stresses and
strains in the individual subcells given some macroscopically homogeneous state of
strain or stress applied to the composite. The approximate solution to the posed bound-
ary value problem is, in turn, used to determine macroscopic (average) or effective prop-
erties of the composite and the effective stress-strain response in the inelastic region.

In the generalized method of cells  for continuous (or discontinuous) fibrous compos-
ites, the repeating unit cell can consist of an arbitrary number of phases. Hence the gen-
eralized method of cells is capable of modeling a multiphase composite. This
generalization extends the modeling capability of the original method of cells to include
the following: 1) inelastic thermomechanical response of multiphased metal matrix com-
posite, 2) modeling of various fiber architectures (including both shape and packing
arrangements), 3) modeling of porosities and damage, and 4) the modeling of interfacial
regions around inclusions including interfacial degradation.

The basic homogenization approach taken in the micromechanical analysis consists
essentially of four steps. First, the repeating volume element, RVE, of the periodic com-
posite is identified. Second, the macroscopic or average stress and strain state in terms
of the individual microscopic (subcell) stress and strain states is defined. Third, the conti-
nuity of tractions and displacements are imposed at the boundaries between the constit-
uents. These three steps, in conjunction with micro-equilibrium, establish the relationship
between micro (subcell) total, thermal and inelastic strains and macro (composite)
strains via the relevant concentration tensors. In the fourth and final step, the overall
macro constitutive equations of the composite are determined. These four steps form the
basis of the micro-to-macromechanics analysis which describe the behavior of heteroge-
neous media. The resulting micromechanical analysis establishes the overall (macro)
behavior of the multi-phase composite and is expressed as a constitutive relation
between the average stress, strain, thermal, and inelastic strains, in conjunction with the
effective elastic stiffness tensor.

That is,

(EQ 1)

where for the most general case of discontinuous reinforcement with  by  by
number of subcells, the effective elastic stiffness tensor, , of the composite is given by,
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(EQ 2)

the composite inelastic strain tensor is defined as,

(EQ 3)

the average thermal strain tensor as,

(EQ 4)

and  is the uniform applied macro (composite) strain. For the case of continuous rein-
forcements with  by  number of subcells, eq. (2) - (4) reduce to the following:

(EQ 5)

(EQ 6)

(EQ 7)

In the above equations matrix notation is employed; where, for example, the average
stress, , average applied strain, , and inelastic subcell strain, , vectors represent,

(EQ 8)

(EQ 9)

(EQ 10)

where the six components of the vector  are arranged as in eq. (9). Similar defini-
tions for ,  also exist. Note that the key ingredient in the construction of this
macro constitutive law is the derivation of the appropriate concentration matrices,
and  having the dimensions 6 by 6 and 6 by  respectively, at the micro
(subcell) level. The definitions of  and , although not given here, may be found in ref-
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erences [2] and [5]. Finally, the matrix  represents the elastic stiffness tensor of
each subcell  and  the respective subcell dimensions  wherein,

Similarly, given the concentration matrices  and , expressions for the
average strain in each subcell can be constructed, i. e.,

as well as average stress,

The analytic constitutive law, see eq. 1, may be readily applied to investigate the behav-
ior of various types of composites, given knowledge of the behavior of the individual
phases. Numerous advantages can be stated regarding the current macro/micro consti-
tutive laws as compared to the other numerical micromechanical approaches in the liter-
ature, e.g. the finite element unit cell approach. One advantage is that any type of simple
or combined loading (multiaxial state of stress) can be applied irrespective of whether
symmetry exists or not, as well as without resorting to different boundary condition appli-
cation strategies as in the case of the finite element unit cell procedure. Another, advan-
tage concerns the availability of an analytical expression representing the macro elastic-
thermo-inelastic constitutive law thus ensuring a reduction in memory requirements
when implementing this formulation into a structural finite element analysis code. Fur-
thermore, this formulation has been shown to predict accurate macro behavior given only
a few subcells, within the repeating cell (see references [2], and [4]). Whereas, if one
employs the finite element unit cell procedure, a significant number of finite elements are
required within a given repeating unit cell to obtain the same level of accuracy as with the
present formulation. Consequently, it is possible to utilize this formulation to efficiently
analyze metal matrix composite structures subjected to complex thermomechanical load
histories. This is particularly important when analyzing realistic structural components,
since different loading conditions exist throughout the structure, thus necessitating the
application of the macromechanical equations repeatedly at these locations.
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